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Abstract

A tracking algorithm for the description of electron beams
using grid-based space charge fields is compared to a
method based on point-to-point calculations. The charged
particles’ equations of motion are solved with a fifth-order
embedded Runge-Kutta method using the concept of
macroparticles. The space charge forces are determined in
the bunch’s restframe with a multigrid-method [1]. 

1  INTRODUCTION
In cases of space charge fields being approximately
piecewise constant, the space charge fields can be
determined in the beam’s rest frame. Using a grid-based
method for calculating the electrostatic potential ϕ′ within
the beam has advantages with respect to particle statistics.
The electric field of a relativistic electron with velocity v
in the laboratory system is focused in transverse direction.
The space angle enclosing a certain share of the electron’s
electric flux (field cone) thus has a decreasing transverse
opening angle if the particle’s energy increases. The
transversal dominated space charge fields of a 10 MeV
electron beam demonstrate the asymmetry due to
relativistics (see Fig. 1).

 
Figure 1: Electric space charge fields of a cylindrical
Gaussian electron beam, 10 MeV, calculated with MAFIA
TS2 code.

Calculating space charge forces by summation over all
point-to-point interactions one has to use enough particles
in order to keep the statistical fluctuation of the number of
adjacent particles lying within a particle’s field cone
small. That is to say, the granularity of the charge density
represented by the macroparticles has to be, depending on
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energy, sufficiently fine-grained in order to model the
physical interaction properly.

A grid-based algorithm for field calculation determines
the space charge fields from a charge density free from
granularity, typically modeled linearly between the grid
points. The number of particles N required for
approximating the charge density appropriately is
therefore independent of energy. In addition, assuming the
minimum number of particles per grid-cell being fixed,
the computation time for determining the fields in a grid-
based algorithm is linear in N when using a multigrid-
method. The number of operations in point-to-point
calculations however is of ( )² N .

2  GRID BASED METHOD
An objectoriented 3D tracking program Q has been
developed [2] realizing a grid-based tracking algorithm.

The finite difference Poisson solver developed for the
tracking code Q uses a geometrical Full-Multigrid-method
[3]. This algorithm’s linear dependency of the number of
operations on the number of gridpoints is shown in Fig. 2.
After the conversion of the charge-density onto a coarsest
grid, Poisson’s Equation is solved directly. The solution is
succesively interpolated onto the next, by a factor of two
finer grid, on which high frequency errors are smoothed
by several relaxation steps using a classical iteration
scheme. Low frequency errors are smoothed by multigrid-
cycles of V type. The electric field at the distinct particle
positions is determined by linear interpolation and
transformed into the lab frame (see Fig. 3).

Figure 2: CPU-time for solving Poisson’s Equation with a
Full-MG solver showing a linear growth.
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Figure 3: Lorentz-transformation of the electric field.

 3  POINT–TO–POINT METHOD
 The simulations with a code using a point-to-point method
to calculate the space charge fields were performed with
the General Particle Tracer (GPT) [4], a well
established 3D tracking code. As tracking code Q it uses a
fifth-order embedded Runge-Kutta method with adaptive
stepsize control to integrate the particles’ equations of
motion.
 The space charge induced fields at the position of

particle i are the summation of the fields generated by the
particles ij ≠ . In the rest frame of macroparticle j this
particle generates an electric field
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 which acts on particle i, jir ′r is the distance measured in the
rest frame. Transforming back to the lab frame yields the
electromagnetic fields. To avoid unrealisticly strong
defocussing effects if two macroparticles are moving
close together, the macroparticles act as clouds with
radius R instead of pointlike charges. Overlapping of two
homogeneous particle clouds results in a reduced electric
field:
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 The results of the simulation strongly depend on the
number of macroparticles N per bunch. By increasing N
the effect of granularity, which induces an overestimation
of the space charge effects, is reduced.
 For a given number of macroparticles the radius of the

particle clouds takes an effect on the results. An oversized
radius reduces the space charge fields. By reducing the
radius the behaviour of the bunch like the emittance and
the transverse standard deviation converges.

4  COMPARISON CALCULATIONS
 In the model problem a uniformly charged cylindrical
beam with a total charge of 1 nC, a transverse standard
deviation of mm 0.5x =σ  and zero emittance drifts at an
energy of 10 MeV over a length of 1.5 m. These beam
parameters are comparable to those being discussed to

arise in the capture cavity of the Tesla Test Facility, there
with a normalized emittance of mrad mm1 .

 

 
 Figure 4: Phase space distribution after 1.0 m drift
calculated with Q. The deviation from a line shape is due
to nonlinear transverse effects at the head and the tail of
the bunch, as can be seen in the 3D plot with z (direction
of drift) as the second abscissa.
 

Figure 5: Phase space distribution after 1.0 m drift
calculated with GPT.

There is a good agreement in the results of the spacial
standard deviation between the two models (see Fig. 6). In
the point-to-point method the description of the emittance
as the most significant statistical quantity is rather strong
dependent on the number of macroparticles. The low
dependency of the emittance determined with the
gridbased method is due to the fact, that the charge
density used for calculating the electric field is free from
granularity.

This independency of the determined space charge
forces on statistics gives rise to the description of
nonlinear effects away from the beam’s longitudinal
center and a conservation of phase space volume at fixed
z (see Fig. 4).
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The deviation in the phase space plot calculated with
GPT (see Fig. 5) is significant. In the center of a
symmetric relativistic beam the determined phase space
volume is not conserved due to a high statistical relative
error in the relativistic electromagnetic fields determined
from point-to-point calculations.

Figure 6: xrms and transverse emittance along driftspace.

4.1  Particle-in-Cell Method and analytical
linear Model

 In a Particle-in-Cell scheme (eg. the 2½-dimensional
MAFIA TS2 code [5]) the coupled problem of Maxwell’s
Equations and the equations of motion are solved
consistently. As can be seen from calculations with a
Gaussian beam ( mm 8.0=zσ ), presented in Fig. 7, the
methods lead to comparable results on the first 0.5 m. The
deviation arising in the TS2 result is understandable due
 

 
 Figure 7: xσ  of a Gaussian beam ( mm 8.0=zσ  at 10
MeV) along driftspace.

 to numerical noise in the field calculation, which would
be compensatable by an increase in the number of
particles only.
 The high number of time steps, which are necessary to

dissolve the beam’s charge-density spacially (Courant
Levy Condition), is countered by the fact, that the
problem of field calculation is restricted to a matrix-vector
multiplication [5]. The main computation time in an
electrostatic code on the other hand is needed for solving
Poisson’s Equation. It’s stability in time depends mainly
on the trajectories’ integration algorithm. Computation
time thus depends on the interval, within which the
assumption of a piecewise constant space charge field
holds and can remain practible for long distance
calculations in such cases.
 Alternatively to particle methods the calculation with an

analytical model for a self-consistent description of a
beam in an accelerator [6], which takes into account linear
forces and is suited for rapid estimations of the significant
beam parameters, leads to a comparable result.

5  CONCLUSIONS
 We find agreement between calculations with the tracking
algorithm using grid-based space charge fields Q, the
point-to-point method GPT and TS2 concerning the
spatial distribution. The description in phase space
however leads to different results. One explanation
favoured by the authors is, that in a point-to-point method
the granularity of the charge density modeled by the
macroparticles limits the achievable accuracy of the space
charge forces determined in a relativistic beam. This leads
to a lower estimation of nonlinear effects away from the
transversal center of a space charge dominated electron
beam and to a stronger statistical error in regions of linear
space charge forces. The statistical limits of a Particle-in-
Cell code such as MAFIA TS2 due to numerical noise in
the field calculation were shown.
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